BENTHIC ASSEMBLAGES FOR ECOLOGICAL EVALUATION ‎OF LAKE MANZALA, MEDITERRANEAN SEA, EGYPT
Full Paper

Keywords

Benthic assemblages, Environmental evaluation, Biodiversity, Dominance species, Lake Manzala

How to Cite

MOHAMED EL KOMI, M. . (2021). BENTHIC ASSEMBLAGES FOR ECOLOGICAL EVALUATION ‎OF LAKE MANZALA, MEDITERRANEAN SEA, EGYPT. Pakistan Journal of Marine Sciences, 30(1), 43–75. Retrieved from http://pakjmsuok.com/index.php/pjms/article/view/53

Abstract

Lake Manzalah one of the northern Nile Delta in Egypt is the largest lake, which lies between the lakes Borollus and Bardaweel and connects to the Mediterranean Sea. It has an area of current 250 thousand acres. It contains many islands particularly along the south-western region forming of semi-enclosed basins and it is characterized by dense submerged hydrophytes as Pomatogeton pectinals; Ceratophyllum demersum and floating hyacinth Eichhornia crassipes. Seven major drains are loading directly in the south to the west. Lake Manzalah-bottomed shallow (0.5-1m), brackish water (3-18‰ and is suffering from the phenomenon of high nutrition (eutrophication) due to increased rates of nutrients and organic matter. So some sources of wastes discharges such as sewage and industrial waste and agricultural activity pour directly into the lake, especially the southern region (Bahr El Baqar Drain). The study aims to study the distribution of benthic organisms in the lake and knowledge of the relationship between the types and aggregates benthic food ecosystem as the important food sources' for some aquatic organisms, especially economic fish and crustaceans in study stations. Bottom sediment samples were collected from 11 sites by grab sampler covering different environments lake and from 4 drains consists mostly of organic materials (sludge) is made up of waste sewage, industrial, agricultural waste plants, and calcareous shells empty. Results indicate for examining configuration qualitative macro benthic recording the 16 species of aquatic plants and invertebrates where empty calcareous shells were more frequent. The abundance of macrobenthic organisms at different sampling sites along Lake Manzala can be ranked as follows: Ostracoda (45.4%, 1010 ind/m2) > submerged plants (12.9%, 287 tufts/m2) > Amphipoda (9.2%, 207 ind ∕m2) > Polychaetes (7%, 110 ind ∕m2) Bivalves (5.9%, 132 ind ∕m2). The biomass of benthic assemblages at different sampling sites can also be ranked as follows: at ST5 (18.1%, 4433 ind ∕m2) > St6 (11.3%, 2772 ind ∕m2) > ST8 (9.8%, 2405 ind ∕m2) > ST3 (9.2%, 2247) > ST7 (8.7%, 2122 ind ∕m2). The biomass of benthic assemblages at different sampling sites can also be ranked as follows: echinoderms (52%) > molluscs (27%) > crustaceans (16%) > polychaetes (2%) > other groups (3%). Due to the increase of pollutants extensively loaded into the drains are the possible factors having affecting the constituents’ structures of benthos. Sites of sampling study were evenly spread (J’ > 0.8) only at sites 6 and 8, moderate diversity (H’ > 1.00) was at most sites and show lower value at sites 3 and 11 and 0 at site 1. The abiotic environmental effects in the lake are general to those generally observed in other areas influenced by organic wastes, namely, changes in the physic-chemical properties of the sediments and low oxygen concentrations in the bottom water due to the decomposition of organic materials.

Full Paper

References

Ahmed, M.H., B.M. El-Leithy, J.R. Thompson, R.J. Flower, M. Ramdani, F. Ayache and ‎S.M. Hassan, 2009. Application of remote sensing to site characterization and ‎environmental change analysis of North African coastal lagoons. Hydrobiol. 622: ‎‎147-171.‎

Ali, M.H., 2008. Assessment of some water quality characteristics and determination of ‎some heavy metals in Lake Manzala, Egypt. Egypt. J. Aquat. Biol. Fish. 12(2): 133 ‎‎-154. ‎

Arnous, M.O. and M.A.A. Hassan, 2015. Heavy metals risk assessment in water and ‎bottom sediments of the eastern part of Lake Manzala, Egypt, based on remote ‎sensing and GIS. Arab J. Geosci. 8(10): 7899-7918.‎

Arvanitidis, C., D. Koutsoubas, C. Dounas and Eleftheriou, 1999. Annelid fauna of a ‎Mediterranean lagoon (Gialova lagoon, south- west Greece): community structure in ‎a severely fluctuating environment. J. Mar. Biol. Assoc. U.K. 79(5): 849-856. ‎

Bernhardt, C.E., J.-D. Stanley and B.P. Horton, 2010. Wetland vegetation in Manzala ‎lagoon, Nile Delta coast, Egypt: Rapid responses of pollen to altered Nile hydrology ‎and land use. J. Coast. Res. 27(4): 731-737.‎

Chapin, F.S. III, K. Autumn and F. Pugnaire, 1993. Evolution of suites of traits in ‎response to environmental stress. Am. Nat. 142: 578-592. ‎

Connell, J., 1975. Some mechanisms producing structure in natural communities: a ‎model and evidence from field experiments. - In: Cody, M. and Diamond, J. (eds), ‎Ecol- ogy and evolution of communities. Harvard Univ. Press, Cambridge, MA, pp. ‎‎460-490.‎

Crowe, T.P., R.C. Thompson, S. Bray and S.J. Hawkins, 2000. Impacts of anthropogenic ‎stress on rocky intertidal communities. J. Aquat. Ecosyst. Stress Recov. 7(4): 273-‎‎297. ‎

Dauer, D.M., J. Anthony, Jr. Rodi and J.A. Ranasinghe, 1992. Effects of low dissolved ‎oxygen events on the macrobenthos of the lower Chesapeake Bay. Estuar. 15(3): ‎‎384-391. ‎

Diaz, S., J.G. Hodgson, K. Thompson, M. Cabido, J.H.C. Cornelissen, A. Jalili, G. ‎Montserrat-Martí, J.P. Grime, F. Zarrinkamar, Y. Asri, S.R. Band, S. Basconcelo, P. ‎Castro-Díez, G. Funes, B. Hamzehee, M. Khoshnevi, N. Pérez-Harguindeguy, M.C. ‎Pérez-Rontomé, F.A. Shirvany, F. Vendramini, S. Yazdani, R. Abbas-Azimi, A. ‎Bogaard, S. Boustani, M. Charles, M. Dehghan, L. de Torres-Espuny, V. Falczuk, J. ‎Guerrero-Campo, A. Hynd, G. Jones, E. Kowsary, F. Kazemi-Saeed, M. Maestro-‎Martínez, A. Romo-Díez, S. Shaw, B. Siavash, P. Villar-Salvador and M.R. Zak, ‎‎2004. The plant traits that drive ecosystems: Evidence from three continents. J. ‎Veget. Sci. 15(3): 295-304.‎

Dinar, A., 1995. Restoring and protecting the world's lakes and reservoirs. World Bank ‎Publications in Special: Book Sources / ISBN 0-8213-3321-6). ‎

EEAA, 2017a. Egyptian Lakes environmental monitoring programme, Bardawil Lagoon, ‎‎2017.‎

EEAA, 2017b. Distribution of Macro Benthos Assemblages in Lake Bardweel. In: Final ‎Report of Management and Development the Fisheries of wet lands for the 8th year ‎EEAA (2017-2018).‎

Ehrlich, A. 1975. Les Diatomées benthiques épiphytes de la lagune de Bardawil (Sinai ‎Septentrional). Rapp. Comm. int. Mer. Médit. 23(3): 121-123. ‎

EL-Bady, M.M. 2014. Spatial Distribution of some Important Heavy Metals in the Soils ‎South of Manzala Lake in Bahr El-Baqar Region, Egypt. Nova J. Engineer. Appl. ‎Sci. 2(3): 1-15. ‎

Elkadya, A.A., S.T. Sweetb, T. Wadeb and A.G. Klein, 2015. Distribution and assessment ‎of heavy metals in the aquatic environment of Lake Manzala, Egypt. Ecol. Indicat. ‎‎58: 445-457.‎

El-Komi, M.M., 1997. Ecology and distribution of macro benthos in Lake Manzalah, ‎Egypt. J. Egypt. Germ. Soc. Zool. 24(D):105-122. ‎

El-Komi, M.M., 2015. Distribution of macro benthos assemblages in Lake Bardweel. In: ‎Final Report of Management and Development the Fisheries of wet lands for the 4th ‎year EEAA (2014-2015).‎

El-Komi, M.M., 2016. Distribution of macro benthos assemblages in Lake Bardweel. In: ‎Final Report of Management and Development the Fisheries of wet lands for the 5th ‎year EEAA (2015-2016).‎

El-Komi, M.M., 2017a. Marine benthic ecology of the Egyptian waters. Saarbrücken, ‎Germany NOOR Publishing, 978-3-330-80563-7.79 pp.‎

El-Komi, M.M., 2017b. Review on the exploitation techniques applied on the marine ‎benthos. Saarbrücken, Germany. NOOR Publishing, 978-3-330-84546-6. 40 pp. ‎

El-Komi, M.M., 2017c. Distribution of macro benthos assemblages in Lake Bardweel. In: ‎Final Report of Management and Development the Fisheries of wet lands for the 8th ‎year EEAA (2017-2018).‎

El-Komi, M.M., 2019. Benthic assemblages for ecological evaluation of Bardawil ‎Lagoon, Mediterranean Sea, Egypt. Pak. J. Mar. Sci. 28(2): 81-114. ‎

Elmorsi, R.R., M.A. Hamed and K.S. Abou-El-Sherbini, 2017. Physicochemical Properties ‎of Manzala Lake, Egypt. Egypt. J. Chem. 60(4): 519-535.‎

El-Saharty, A., 2014. Water, Nitrogen and Phosphorus budgets of Lake Manzalah. J. ‎Mar. Engineer. Technol. 13(3): 57-62. (https://doi.org/10.1080/20464177.2014. ‎‎11658122). ‎

Elshemy, M. and M. Khadr, 2015. Hydrodynamic impacts of Egyptian coastal lakes due ‎to climate change-example Manzala Lake. Eighteenth International Water ‎Technology Conference, IWTC18 Sharm ElSheikh, 12-14 March 2015.‎

El-Sherif, Z.M., S.M. Abul-Ezz and M.M. El-Komi, 1993. Effect of pollution on the ‎productivity in Lake Manzalah (Egypt). Proc. Int. Conf. On Future of Aquatic ‎Resources in Arab Region, 6-8 Febuary, Alexandria, Egypt: 159-169.‎

FAO, 1991. Lecture notes prepared for the training workshop on the statistical treatment ‎and interpretation of marine community data. Athens, 196 pp.‎

Garnier, E., J. Cortez, G. Billès, M.L. Navas, C. Roumet, M. Debussche, G. Laurent, A. ‎Blanchard, D. Aubry, A. Bellmann, C. Neill and J.P. Toussaint, 2004. Plant ‎functional markers capture ecosystem properties during secondary succession. Ecol. ‎‎85(9): 2630-2637. ‎

Goodall, D.W., 1973. In Handbook of Vegetation Science, Part 5. Ordination and ‎classification of communities, edited by R.H. Whittaker, Dr. W. Junk Publishers, The ‎Hague: 107-156.‎

Grime, J.P., 2006. Trait convergence and trait divergence in herbaceous plant ‎communities: mechanisms and consequences. Journal of Vegetation Science 17: ‎‎255–260. ‎

Grime, J.P., J.G. Hodgson and R. Hunt, 1988. Comparative Plant Ecology. A functional ‎approach to common British species. London: Unwin Hyman. Publisher: Springer ‎Netherlands. ISBN: 978-94-017-1094-7.‎

Grotkopp, E., M. Rejmanek and T.L. Rost, 2002. Toward a causal explanation of plant ‎invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. ‎Am. Nat. 159(4): 396-419.‎

Hagberg, J. and B.G. Tunberg, 2000. Studies on the co-variation between physical ‎factors and the long-term variation of the marine soft-bottom macrofauna in ‎Western Sweden. Estuar. Coast. Shelf Sci. 50(3): 373-385.‎

Hamilton, M.A., B.R. Murray, M.W. Cadotte, G.C. Hose, A.C. Baker, C.J. Harris and D. ‎Licari, 2005. Life-history correlates of plant invasiveness at regional and continental ‎scales. Ecol. Lett. 8(10): 1066-1074. ‎

Khairy H.M., K.H. Shaltout, M.M. El-Sheekh and D.I. Eassa, 2015. Algal diversity of the ‎Mediterranean lakes in Egypt. International Conference on Advances in ‎Agricultural, Biological & Environmental Sciences (AABES-2015) London (UK). ‎

Kremen, C., 2005. Managing ecosystem services: what do we need to know about their ‎ecology? Ecol. Lett. 8(5): 468-479.‎

Laetz, C. 1998. Marine benthic invertebrate communities near king country’s waste ‎water out falls. Puget Sound Res. p. 754-759.‎

Magurran Anne, E. and J. McGill Brian, 2011. Biological Diversity Frontiers in ‎Measurement and Assessment Oxford University Press CHAPTER 4 Estimating ‎species richness by Nicholas J. Gotelli and Robert K. Colwell pp. 39-335.‎

Magurran Anne, E., 1955. Measuring Biological Diversity. Chapter 2: The commonness, ‎and rarity, of species: pp. 18-71.‎

Margalef, R., 1958. Information theory in ecology. Gen. System. 3: 36-71. ‎

Mashaly, I.A., O.A. El-Shahaby, A.K. Hegazy, R.M. Rizk and E.A. EL-Zemety, 2007. ‎Ecological study on plant genetic resources in Lake Manzala, Egypt. Egypt. J. ‎Environ. Sci. 40(3): 355-374. ‎

McGill, B.J., B.J. Enquist, E. Weiher and M. Westoby, 2006. Rebuilding community ‎ecology from functional traits. Trends Ecol. Evol. 21(4): 178-185. (doi: ‎‎10.1016/j.tree.2006.02.002)‎

Menge, B.A., 2000. Top-down and bottom-up community regulation in marine rocky ‎intertidal habitats. J. Exp. Mar. Biol. Ecol. 250(1-2): 257-289.‎

Mistri, M., E.A. Fano, G. Rossi, K. Caselli and R. Rossi, 2000. Variability in ‎macrobenthos communities in the Vali di Comacchio, northern Italy, a hyper ‎eutrophic lagoonal ecosystem. Estuar. Coast. Shelf Sci. 51: 599-611. ‎

Mistri, M., R. Rossi and E.A. Fano, 2001. Structure and secondary production of a soft-‎bottom macrobenthic community in a brackish lagoon (Sacca di Goro, north-‎eastern Italy). Estuar. Coast. Shelf Sci. 52(5): 605-616.‎

Nicolaidou, A., F. Bourgoutzani, A. Zenetos, O. Gue- Lorget and J.P. Perthuisot, 1988. ‎Distribution of molluscs and polychaetes in coastal lagoon in Greece. Estuar. Coast. ‎Shelf Sci. 26: 337-350.‎

Olden, J.D., N.L. Poff and K.R. Bestgen, 2006. Life-history strategies predict fish ‎invasions and extirpations in the Colorado River Basin. Ecol. Monogr. 76(1): 25-40. ‎

Pearson, T.H. and R. Rosenberg, 1987. Feast and fanime: structuring factors in marine ‎benthic communities. In: Gee J. and P. Giller (eds), Organization of communities: ‎past and present. Oxford. The 27th Symposium of the British Ecological Society ‎Aberystwyth. Blackwell Scientific Publications. 373-395. ‎

Pielou, E.C., 1966. The measurement of diversity in different types of biological ‎collections. J. Theorit. Biol. 13: 131-144. ‎

Poff, N.L. 1997. Landscape filters and species traits: towards mechanistic understanding ‎and prediction at Stream ecology. J. North Am. Benthol. Soc. 16(2): 391-409. ‎

PTI, 1993. as cited by Laetz, 1998. Recommendations for Assessing Adverse Benthic ‎Effects in Puget Sound. Peppered for: Washington State Department of Ecology ‎Sediment Management Unit, Olympia, WA.‎

Purvis, A., and A. Hector, 2000. Getting the measure of biodiversity. Nature. 405: 212-‎‎219. ‎

Raffaelli, D. and S. Hawkins, 1996. Intertidal Ecology.Kluwer Academic Publishers, ‎London. 356 pp.‎

Ramadan Adel, A., 2002. Population Dynamics and Multivariate Analysis. Pak. J. Biol. ‎Sci. 5(8): 842-852. ‎

Rasmussen, E.K., O.S. Peterson, J.R. Thompson, R.J. Flower, M.H. Ahmed 2009. ‎Hydrodynamic-ecological model analyses of the water quality of Lake Manzala ‎‎(Nile Delta, Northern Egypt). Hydrobiol. 622: 195-220. (doi: 10.1007/s10750-008-‎‎9683-7).‎

Said, M.A., M.A.R. Abdel-Moati, 1995. Water Budget of Lake Manzala Egypt. ‎Mahasagar. 28(1,2): 75-81.‎

Said, MA, Abdel-Moati, MAR, (1997). A Water Budget Study Of Lake Manzalah, ‎EGYPT. Pak. J. Mar. Sci. 6(1&2): 27-37. ‎

Samaan, A.A., A.A. Aleem, 1972. Quantitative estimation of bottom fauna in Lake ‎Marriut. Bull. Inst. Oceanograph. Fisher. 2: 375-397.‎

Shannon, C.E. and W. Weaver, 1949.The Mathematical Theory of Communities. ‎University of Illinois Press: 117 pp. ‎

Shiel, D.R. 2009. Multiple stressors and disturbance: when changes are not like a thing. ‎In: Wahl, M. (ed.), Marine hard bottom communities; patterns, dynamics, diversity, ‎and changes. Ecol. Stud. 206: 281-294.‎

Simpson, E.H., 1951. The interpretation of interaction in contingency tables. J. Roy. ‎Statist. Soc. Series B 13(2): 238-241.‎

Snelgrove Pe, V.R. 2001. Diversity of marine species. Encyclopedia of Ocean Sciences. ‎Oxford: Academic Press: 748-757.‎

Suding, K.N., S. Lavorel, F.S. Chapin, J.H.C. Cornelissen, S. Díaz E. Garnier, D. Golberg, ‎D.U. Hooper, S. Jackson, and M.L. Navasm, 2008. Scaling environmental change ‎through the community-level: a trait-based response-and-effect framework for the ‎plant. Glob. Chang. Biol. 14(5): 1125-1140.‎

Weiher, E., G.D.P. Clarke and P.A. Keddy, 1998. Community assembly rules, ‎morphological dispersion, and the coexistence of plant species. Oikos. 81(2): 309-‎‎322.‎

Weisberg, S.B., J.A. Ranasinghe, D.M. Dauer, L.C. Schaffner, R.J. Diaz and J.B. Frithsen, ‎‎1997. An estuarine benthic index of biotic integrity (B-IBI) for the Chesapeake Bay. ‎Estuar. coast. 20(1): 149-158.‎

Williams N.S.G., J.W. Morgan, M.J. McDonnell and M.A. McCarthy, 2005. Plant traits ‎and local extinctions in natural grasslands along an urban-rural gradient. J. Ecol. ‎‎93(6): 1203-1213.‎

Woodward, F.I. and A.D. Diament, 1991. Functional approaches to predicting the ‎ecological effects of global change. Funct. Ecol. 5(2): 202-212.‎

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 MOHAMED MOHAMED EL KOMI