Treptacantha barbata
bio-concentration factor
biota-sediment accumulation factor

How to Cite

Arıcı, E. (2023). ELEMENTAL ACCUMULATION IN MACROALGAE TREPTACANTHA BARBATA (STACKHOUSE) ORELLANA & SANSÓN, 2019 FROM SINOP, TÜRKIYE. Pakistan Journal of Marine Sciences, 32(1), 73–82. Retrieved from https://pakjmsuok.com/index.php/pjms/article/view/134


In this study, the contamination profile of heavy metal levels (Cd, Cu, Fe, Hg, Pb, Zn) of Treptacantha barbata (Stackhouse) Orellana & Sansón, 2019, seawater and sediment samples were analyzed by ICP-MS and reference materials were used to determine the reliability of the analysis. All samples were collected from the Sinop coast (Türkiye) from August 2021 through April 2022. As a result of the study, metal levels were found in the following sequence: Hg < Cd < Pb < Cu < Zn < Fe for seawater and   T. barbata and Hg < Cd < Cu < Pb < Zn < Fe for sediment. Among the metals, Cu was bio-accumulative in biota; Cd and Hg metals in the sediment are micro concentrator by  T. barbata.



Altuğ, G., C. Yardımcı, and M. Aydoğan, 2005. Levels of some toxic metals in marine algae from the Turkish coast of the Black Sea, Turkey. The 1st Biannual Scientific Conference: The Black Sea Ecosystem 2005 and Beyond. Istanbul, Türkiye, 09 May 2005, ss.199.

Arıcı, E. and L. Bat, 2016. Using marine macroalgae as biomonitors: Heavy metal pollution along the Turkish west coasts of the Black Sea. 41st CIESM Congress, 12-16 September 2016, Kiel-Germany. Rapp. Comm. Int. Mer Medit. 41: 238.

Arıcı, E., 2017. Using dominant macroalgae and seagrass in Sinop coastline of the Black Sea as biomonitor for determination of heavy metal pollution. Sinop University, Ph.D Thesis, 161 p. (in Turkish).

Arıcı, E., and L. Bat, 2017. Assessment of elemental uptakes by Ulva (Chlorophyta) species collected from Sinop coasts of the Black Sea. Pak. J. Mar. Sci. 26(1&2): 01-12.

Arıcı, E., L. Bat, and G. Yıldız, 2019. Comparison of metal uptake capacities of the brown algae Cystoseira barbata and Cystoseira crinita (Phaeophyceae) collected in Sinop, Turkey. Pak. J. Mar. Sci. 28(1): 05-17.

Bat, L. and E. Arıcı, 2016. Heavy metal concentrations in macroalgae species from Sinop coasts of the southern Black Sea. J. Coast. Life Medic. 4(11): 841-845. (doi: 10.12980/jclm.4.2016J6-212).

Bat, L., A. Öztekin, F. Şahin, E. Arıcı and U. Özsandıkçı, 2018. An overview of the Black Sea pollution in Turkey. Mediterran. Fisher. Aquacult. Res. 1(2): 67-86.

Bat, L., E. Arici and A. Öztekin, 2020. Threats to Quality in the Coasts of the Black Sea: Heavy Metal Pollution of Seawater, Sediment, Macro-Algae and Seagrass. In: Shit, P.K., Adhikary, P.P., Sengupta, D. (eds). Spatial Modeling and Assessment of Environmental Contaminants. Environmental Challenges and Solutions. Springer, Cham. pp. 289-325. (doi: 10.1007/978-3-030-63422-3_18).

Buchanan, J.B., 1984. Sediment Analysis. in: Holme, N.A. et al., (Eds.) Methods for the study of marine benthos. Blackwell, Oxford, UK. pp. 41-65.

Campbell, P.G.C. and A. Tessier, 1987. Metal Speciation in Natural Waters: Influence of Environmental Acidification. Sources and Fates of Aquatic Pollutants, Chapter 7, pp. 185-207. (doi: 10.1021/ba-1987-0216.ch007).

CEVA, 2019. Edible seaweed and microalgae - Regulatory status in France and Europe. France, 1-15.

Çulha, S.T., F. Koçbaş, A. Gündoğdu and M. Çulha, 2013. Heavy metal levels in marine algae from the Black Sea, Marmara Sea and Mediterranean Sea. Rapp. Comm. int. Mer Médit. 40: 827-828.

Çulha, S.T., F. Koçbaş, A. Gündoğdu, S. Topçuoğlu and M. Çulha, 2010. Heavy metal levels in macroalgae from Sinop in the Black Sea. Rapp. Comm. int. Mer Médit. 39: 239.

EC (European Commission), 2008. Commission Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) Nº 1881/2006 as regards maximum levels for certain contaminants in foodstuffs. Off. J. Euro. Uni. 173: 6-9.

EC (European Commission), 2011. Setting maximum levels for certain contaminants in foodstuffs. Commission Regulation (EC) No. 420/2011. Amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs.

EC (European Commission), 2014. Commission Regulation (EC) No 488/2014 of 12 May 2014 amending Regulation (EC) Nº 1881/2006 as regards maximum levels for cadmium in foodstuffs. Off. J. Euro. Uni. L 138: 75-79.

FAO/WHO, 1995. Codex General Standard for Contaminants and Toxins in Food and Feed. Codex Standard, 66 p.

Fowler, S. and G.A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanograph. 16(3): 147-194. (doi: 10.1016/0079-6611(86)90032-7).

Geyer, H.J., G.G. Rimkus, I. Scheunert, A. Kaune, A. Kettrup, M. Zeeman, D.C.G. Muir, L.G. Hansen and D. Mackay, 2000. Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans, in bioaccumulation. New aspects and developments. In: B. Beek (Editor), the Handbook of Environmental Chemistry. Springer-Verlag Berlin Heidelberg, New York, 167 pp.

Güven, K.C., S. Topçuoğlu, D. Kut, N. Esen, N. Erentürk, N. Saygı, E. Cevher and B. Güvener, 1992. Metal uptake by Black Sea algae. Bot. Mar. 35: 337-340. (doi: 10.1515/botm.1992.35.4.337).

Huang, C-W., Z.Y. Chai, P-L. Yen, C.M. How, C-W. Yu, C-H. Chang and V.H-C. Liao, 2020. The bioavailability and potential ecological risk of copper and zinc in river sediment are affected by seasonal variation and spatial distribution. Aquat. Toxicol. 227: 105604. (doi: 10.1016/j.aquatox.2020.105604).

Jalkanen, J.-P., L. Johansson, M. Wilewska-Bien, L. Granhag, E. Ytreberg, K.M. Eriksson, D. Yngsell, I.-M. Hassellöv, K. Magnusson, U. Raudsepp, I. Maljutenko, H. Winnes, and J. Moldanova, J. Modelling of discharges from Baltic Sea shipping. Ocean Sci. J. 17(3): 699-728. (doi: 10.5194/os-17-699-2021).

Kleinov, K.N., J.W. Nichols, W.L. Hayton, J.M. McKim and M.G. Barron, 2008. Toxicokinetics in fish. In: RT Di Giulio, DE Hinton (Eds.). The Toxicology of Fishes, Taylor and Francis Group LLC, Boca Raton, US, pp. 55-152 (doi: 10.1201/9780203647295.ch3).

Kravtsova, A., N. Milchakova and M. Frontasyeva, 2014. Elemental accumulation in the Black Sea brown algae Cystoseira studied by neutron activation analysis. Ecol. Chem. Engineer. S. 21(1): 9-23. (doi: 10.2478/eces-2014-0001).

Önen, S.A. and M. Öztürk, 2017. Investigation of heavy metal pollution in eastern Aegean Sea coastal waters by using Cystoseira barbata, Patella caerulea and Liza aurata as biological indicators. Environ. Sci. Pollut. Res. 24(8): 7310-7334. (doi: 10.1007/s11356-016-8226-4.).

Rubio, C., G. Napoleone, G. Luis-Gonzalez, D. Gonzales-Weller, A. Hardisson and C. Revert, 2017. Metals in edible seaweed. Chemosph. 173: 572-579. (doi: 10.1016/j.chemosphere.2017.01.064).

Sawidis, T., M.T. Brown, G. Zachariadis and I. Sratis, 2001. Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea. Environ. Int. 27(1): 43-47. (doi:10.1016/s0160-4120(01)00052-6.).

Storelli, M.M., A. Storelli and G.O. Marcotrigiano, 2001. Heavy metals in the aquatic environment of the Southern Adriatic Sea, Italy macroalgae, sediments and benthic species. Environ. Int. 26(7-8): 505-509. (doi: 10.1016/s0160-4120(01)00034-4.).

Tessier, A. and Campbell P.G.C. (1987). Partitioning of trace metals in sediments: Relationships with bioavailability. Hydrobiologia, 149: 43-52.

Topçuoğlu, S., K.C. Güven, N. Balkıs and C. Kırbaşoğlu, 2003. Heavy metal monitoring of marine algae from the Turkish coast of the Black Sea, 1998-2000. Chemosph. 52(10): 1683-1688. (doi: 10.1016/S0045-6535(03)00301-1.).

Tüzen, M., B. Verep, A.O. Öğretmen and M. Soylak, 2009. Trace element content in marine algae species from the Black Sea, Turkey. Environ. Monit. Assess. 151(1-4): 363-368. (doi: 10.1007/s10661-008-0277-7).

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Elif Arıcı